Amazon Affiliate

Tuesday, 25 June 2013

Derivation of BRESENHAM’S Line Drawing Algorithm.



Assumption :
                          Y=mX+b
                          where b is the intercept cut by line at Y axis and m is the slope of line
                            (0 <= m < 1)
Derivation :
                                Initially we have plotted a point (Xk , Yk) and increase  X by 1 we come to Xk+1.
Decision Parameter(Pk)  - (Xk+1 , Yk+1) 
                                             - (Xk+1 , Yk)
D1 = Y – Yk
D1 = m(Xk+1)+b – Yk
D2 = Yk+1 – Y
D2 = Yk+1 – [m(Xk+1)+b]
D1-D2 = m(Xk+1) – Yk -  Yk+1 + m(Xk+1) + 2b
D1-D2 = 2m(Xk+1) + 2b – Yk – Yk+1
D1-D2 = 2mXk + 2m – 2Yk + (2b-1)
Put  m = dY/dX
(D1-D2)dX = 2Xk dY – 2Yk dX + 2dY + (2b-1)dX

 Pk = 2Xk dY – 2Yk dX + C
 Where C = 2dY + (2b-1)dX

 Pk+1 = 2Xk+1 dY – 2Yk+1 dX + C
 Pk+1-Pk = 2(Xk+1 - Xk)dY – 2(Yk+1 - Yk)dX
 Pk+1 = Pk + 2dY – 2(Yk+1 - Yk)dx    --------------------------    (A)
  If Pk is negative (Pk < 0)
  (D1-D2)dX < 0
   Xk+1 – Xk = 1
   Yk+1 – Yk = 0

   Put these value in A
Pk+1 = Pk +2dy
This is the decision parameter for less than zero.
If P is positive (P>=0)

(D1-D2)dx  >= 0
Xk+1 – Xk = 1
Yk+1 – Yk = 1
 put these value in A

 Pk+1 = Pk + 2(dY - dY)
This is the decision parameter  for greater than zero.
Initial value of decision parameter (Xo , Yo)
Po = 2Xo dY – 2Yo dX + 2dY + (2b-1)dX      --------------------------  (B)
Yo = mXo +b
YomXo = b
YodY/dX Xo = b
2Yo – 2Xo dY/dX = 2b
2Yo dx – 2Xo dY - dX = (2b-1)dX

Put the value of (2b-1)dX  in B
Po = 2Xo dY – 2Yo dX + 2dY + 2Yo dx – 2Xo dYdX
Po = 2dY – dX
This is the initial decision parameter.


2 comments:

  1. what happens when the decision parameter is zero

    ReplyDelete
  2. would u explain derivation of midpoint line algorithm

    ReplyDelete