Amazon Affiliate

Saturday, 7 April 2012

DERIVATION OF BRESENHAM'S CIRCLE DRAWING...


DERIVATION :
                           Let us consider the circle at origin (0,0) i.e. x2 + y2 = r2 and (xk , yk) be  initial points.
F(x,y) = x2 + y2 – r2
F(N) = (xk + 1)2 + y2k – r2
F(S) = (xk + 1)2 + (yk - 1)2 – r2
Decision parameter (Pk) = F(N) + F(S)
Pk = 2( xk + 1 )2 + y2k + (yk - 1)2 – r2
Initial decision parameter (Po) = 2(1+0)2 + r2 + (r-1)2 – 2r2
Po = 3-2r 
Pk+1 = 2(xk + 2)2 + y2k+1 + (yk+1 -1)2 – 2r2
Pk+1Pk = 2[(xk+2)2 – (xk+1)2] + (y2k+1 – y2k) + (yk+1 -1)2 – (yk-1)2
Pk+1 = pk + 2(2xk+3) + [(yk+1 + yk)(yk+1 - yk)] + [(yk+1 + yk - 2)(yk +1 - yk)]-----------(A)

Case 1 :
 If P is negative
xk+1xk = 1
yk+1yk = 0
Put in (A)
Pk+1 = Pk + 2(2xk + 3)
Pk+1 = Pk + 4xk + 6

Case 2 :
If P is positive
xk+1 xk = 1
yk+1yk = -1
Put in (A)
Pk+1 = Pk + 4xk+6 + (yk+1 +yk)(-1) + (yk+1 +yk -2)(-1)
Pk+1 = Pk + 4xk – 4yk + 10

4 comments:

  1. Nice tutorial
    http://www.geeksprogrammings.blogspot.in

    ReplyDelete
  2. nice job broii... u done fantastic work
    wow... naughty nitesh <3

    ReplyDelete
  3. Eqn glt haii f(n) and f(s wali

    ReplyDelete