Derivation :
Initially we have
plotted a point (Xk , Yk)
and increase X by 1 we come to Xk+1.
Decision Parameter(Pk) - (Xk+1 , Yk+1)
-
(Xk+1 , Yk)
D1 = Y – Yk
D1 = m(Xk+1)+b – Yk
D2 = Yk+1 – Y
D2 = Yk+1 – [m(Xk+1)+b]
D1-D2 =
m(Xk+1) – Y k - Yk+1 + m(Xk+1)
+ 2b
D1-D2 = 2m(Xk+1) + 2b – Y k –
Yk+1
D1-D2 = 2mXk + 2m – 2Yk +
(2b-1)
Put m = dY/dX
(D1-D2)dX =
2Xk dY –
2Yk dX + 2dY + (2b-1)dX
Pk = 2Xk dY –
2Yk dX + C
Where C = 2dY +
(2b-1)dX
Pk+1 =
2Xk+1 dY – 2Yk+1 dX + C
Pk+1-Pk =
2(Xk+1 - Xk)dY – 2(Yk+1 – Yk)dX
Pk+1 =
Pk +
2dY – 2(Yk+1 - Yk)dx -------------------------- A
If Pk
is negative (P k < 0)
(D1-D2)dX < 0
Xk+1 –
X k = 1
Yk+1 –
Y k = 0
Put these value
in A
Pk+1
= Pk
+2dy
This is the decision parameter for less than zero.
If P is positive (P>=0)
(D1-D2)dx >= 0
Xk+1 – X k = 1
Yk+1 – Y k = 1
put these value
in A
Pk+1 = Pk + 2(dY - dY)
This is the decision parameter for greater than zero.
Initial value of decision parameter (Xo , Yo)
Po = 2Xo dY –
2Yo dX + 2dY + (2b-1)dX -------------------------- B
Yo =
mXo +b
Yo –
mXo = b
Yo –
dY/dX Xo = b
2Yo – 2Xo dY/dX = 2b
2Yo dx –
2Xo dY - dX = (2b-1)dX
Put the value of (2b-1)dX in B
Po = 2Xo dY –
2Yo dX + 2dY + 2Yo dx – 2Xo dY – dX
Po = 2dY – dX
This is the initial decision parameter.
No comments:
Post a Comment